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SURFACE COVER INFILTRATION INDEX: A SUGGESTED
METHOD TO ASSESS INFILTRATION CAPACITY FOR
INTRINSIC VULNERABILITY IN KARSTIC AREASIN

ABSENCE OF QUANTITATIVE DATA

Levent Tezcan & Mehmet Ekmekci

Abstract

Karst is a hydrogeological environment of importance not only for its water resources
potential but also for its scenic and economic potential, thereby increasing the intensity
of human impact. The uniqueness of karst in this regard stems from its high sensitivity
and vulnerability to imposed pressures and its distinctive response to these pressures.
Therefore, a clear definition and formulation of the concept of ‘intrinsic vulnerability’ is
essential for the design of vulnerability and/or management criteria of the karstic system
as aresource. In this regard, the recharge rate, the amount of water passing through the
unsaturated zone into the aquifer, isamong the principal attributes of the intrinsic vulner-
ability. Where data and measurements are available for even large areas, recharge can be
evaluated quantitatively on the basis of field measurements and the water balance equa
tion. However, particularly for countries suffering from lack of essential data for a quan-
titative evaluation of the net recharge rate, the recharge can be estimated using some
derived parameters such as the so called ‘ Surface Cover Infiltration Index’ proposed in
this paper. The DRASTIC method which is modified by using SCI, soil thickness and
precipitation, allows the unique hydrological behavior of karst to be considered by redis-
tributing of the intrinsic vulnerability values on the basis of hydrologic connections
between neighboring cells.

Following a detailed description of the SCI index and the modification of DRASTIC
method for karst aquifers, a case study carried out to demonstrate this method is present-
ed in this paper whose objective is to discuss and thus elaborate the suggested method-
ology. The Olimpos National Park area was sel ected because the great variation in lithol-
ogy, landuse and topography. It was found that the relative vulnerability may vary partic-
ularly in the neighborhood of the highly vulnerable cells covered by carbonate rocks. The
methodology was applied using ARC-GIS software. All spatial features used in compu-
tations were classified by the appropriate functions built into the software.
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Introduction

Given the exact mathematical expression of the behavior of a physical system and val-
ues of all parameters and variables in the required accuracy and precision, response of
the system to any change of any component can be estimated with a given uncertainty.
However, most natural systems are still far from being described by exact mathematical
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expressions. This is true particularly for hydrogeological systems. Developing mathe-
matical models to simulate natural systems is the primary purpose of researchers and
practitioners. However, mathematical models produce meaningful results only if the
required data are provided with a certain scale, reliability, accuracy and precision.
Because the studied natural hydrogeological systems cover large areas, generating these
data generally requires hard, time consuming and costly work. Empirical relations and
equations help the hydrogeologist in solving practical problems but at a lower level of
accuracy, because they are easier to use. However, they too require some quantitative
data generation. Moreover, in most cases empirical relations are site-specific; therefore
some constants and parameters should be determined for the application site if one wants
to be correct at a certain level. There is still away out even if the smaller amount of data
required by the empirical equations are lacking: parametric system methods also called
‘expert systems'. Although the uncertainty inherent to these types of tools is high, they
provide the hydrogeologist with rapid and in many cases effective solutions. It is clear
that uncertainty increases as the natural system is defined with less mathematics. That is,
mathematical expressions are most accurate while expert systems are least accurate
(excluding descriptive evaluation based on completely subjective observations). The
tools require more knowledge and experience as they contain more uncertainty.
Knowledge about the tool itself and the application area together with experience in
problem-definition are essential for an effective use of expert systems such as point count
system models a so known as parameter weighting and rating methods.

Expert systems are the most common tools used for assessing potential of groundwater
pollution. This potential pollution is referred to as groundwater/aquifer vulnerability.
Two types of vulnerability are defined; intrinsic and specific. Intrinsic vulnerability
refers to the properties of the groundwater system only and does not consider a specific
contaminant whereas specific vulnerability associates intrinsic vulnerability with a spe-
cific contaminant. Methods of assessing intrinsic vulnerability are much more common
because specific vulnerability requires some data related to the behavior of that specific
contaminant.

DRASTIC is the most common method used in intrinsic vulnerability mapping. In this
context, groundwater vulnerability mapping is used as a guide in identifying areas that
are more susceptible to groundwater contamination within the mapped area. Scale of data
controls the scale of the vulnerability maps. Therefore, accuracy of vulnerability maps
are scale dependent. As explained above, the nature of the method necessitates experi-
ence in hydrogeology and close familiarity with the site.

Due to the very specific nature of karst aquifers, uncertainty inherent to expert systems
like DRASTIC istwofold. Karst is a fragile environment and requires very detailed and
careful examination for several aspects but primarily of water input, throughput and out-
put. Some methods such as EPIK and VULK were proposed for karst terrains (Civita, et
al, 1991; Doerfliger and Zwahlen, 1995). These methods involve parameters specific to
karst but till require improvement, especialy for applicationsin large areas that include
both karstic and nonkarstic lithologies. The unique nature of karst involves the effective
interconnection between surface and subsurface drainage. In vulnerability mapping, an
area having low vulnerability may directly be interconnected with a highly vulnerable
karstic area through the input features.
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To the authors, it is reasonable to modify the commonly used DRASTIC method so that
it also considers the very specific character of karst instead of proposing new methods.
This, subsequently, requires re-designation of DRASTIC parameters in terms of weights
and rates. An index for assessment of Surface Cover Infiltration Ability is defined and
proposed to be used within DRASTIC method for karstic terrains.

Drastic modified for karst aquifers

DRASTIC essentially combines the major geologic and hydrogeol ogic factors that con-
trol groundwater movement in a hydrological system (Aller, et a., 1987). The features
that it considers are evident in its name: depth to water (D), recharge (R), aquifer media
(A), soil media (S), topography (T), impact of vadose zone (1) and hydraulic conductiv-
ity of aquifer (C). The weighting and rating technique is applied by numerical ranking of
these features which involves weights, ranges and ratings. The most significant factors
have weights of 5; the least significant a weight of 1.

Itisclear that karst can be reflected only in terms of aquifer media and conductivity both
having a medium weight (3) compared to D (5), | (5), and R (4). On the other hand, in
karstic areas, due to the rapid conduit flow which contributes directly to groundwater, the
effect of depth to water and thickness is less pronounced. Specific to karst, type of
recharge is more significant than the rate of recharge. Similarly, the effect of topography
is much more pronounced as the surface runoff may be diverted into subsurface flow path
through karstic features. Hence, an additional knowledge and experience in karst hydro-
geology is also essentia for an effective DRASTIC mapping of karst aquifers. In order
to reduce the subjective judgments, the DRASTIC features were re-organized to reflect
the specific character of karst aquifers. In this context, depth to water (D), aquifer media
(A), hydraulic conductivity (C) and partially the impact of the vadose zone (1) were eval-
uated within one derived index called the surface cover infiltration ability index (SCI).
SCI is derived by overlaying the surface lithology (SL), lineaments (L), drainage densi-
ty (DD), and karstic features (KF). In the next step, the derived map is matched with the
soil cover thicknessto convert the SCI to surface cover protectiveness (SCP). Apparently,
SCPincludes - to a certain degree - the impact of the vadose zone too. The intrinsic vul-
nerability index (IVI) is obtained by overlaying the rainfall distribution over the area as
the potential recharge feature (R). In order to be on the safe side, the areal precipitation
map should be prepared using the maximum monthly precipitation records. It should be
noted that on the IVI map, vulnerability values are computed independently without con-
sidering the hydrogeological conditions in other cells. In contrast, allogenic recharge of
karst aguifersindicates that it is essential to consider the hydrologic interrelation among
cellsin assigning a vulnerability value. For example, a high 1VI cell may receive direct
contribution by surface runoff from alow IVI cell. It is evident that, for a more effective
vulnerability mapping, the IV1 should be re-assessed for the low 1V1 cell so asto reflect
this contribution. In other words, the low 1VI cell should have a higher IVI and thus
should be considered, in effect, as more susceptible to pollution because even though
there will be no direct contribution of contaminant to the groundwater directly on this
cell, it may transfer the pollutant to ahigh IVI cell (‘akarstic cell with point recharge for
instance).

This problem is resolved by re-assessing IVI values by quantifying the interrelation
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among cells. Quantification of hydrologic interrelation among cells is made by defining
atravel time index (TTI) which is the measure of contribution of the upstream cells to
that located downstream. Calculation of TTI is based on the slope of the surface topog-
raphy (T). The V1 is redistributed by weighting the rate of contribution. The final map
is the RIVI map for areas including also karstic terrains. Obviously all DRASTIC fea
tures are used but in different arrangement to reflect the nature of karst.

Surface cover infiltration ability (SCI)

“Surface Cover Infiltration (SCI) Index” is dependent on some selected lithological,
structural, hydrological and morphological factors. The actual infiltration depends upon
several meteorological, hydrogeological and topographical parameters, such as the effec-
tiverainfall, slope and cover of theterrain, fracture intensity, karstic features, and surface
lithology. However, in this descriptive approach, which does not intend to assess the
actual infiltration, the term ‘infiltration’ is used only to define the relative ability of the
surface cover to permit the water to seep to the subsurface.

A weighting and rating method is used for assessment of the surface cover infiltration. It
is derived from four parameters which are considered to play the major rolein giving the
unit the ability of permitting the water to seep into the subsurface in natural conditions.
These are surface lithology, lineaments, karstic features and drainage density. The
method presents a descriptive approach. In the SCI index the area under examination is
discretized into a grid of finite square elements (FSE). The size of FSE is dependent on
the scale of the map. However, the morphological and hydrogeological structural com-
plexity of the area controls the size of the basic grid. The scale should be selected to
allow areasonable balance between the need of high resolution and the detail of the data
available.

Surface Lithology (SL)

Surface lithology is classified according to either permesbility, a function of the medium
only, or hydraulic conductivity, a function not only of the porous medium but also of the
fluid. Three main classes for the surface lithology are considered in SCI index: Pervious,
Semipervious and Impervious. Rating decreases as the permeability of the surface cover
decreases (Table 1). Abundant data about the range of values of hydraulic conductivity and
permesbility are well documented in the literature. The range of values of hydraulic con-
ductivity and permeability that can be used in assigning arating to the surface lithology, if
this specific value is not available for the study area can be found in Bear (1979) or Freeze
and Cherry (1979). Permeability of the surface cover and relative ratings are as follows:

Hydrogeological Character Rating

Pervious 2
Semipervious 1
Impervious 0

Lineaments (L)
Structural relationships play an important role in the infiltration process as well as
regional directions of water circulation. Particularly in karstic areas, the structural rela-
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tionships greatly affect the formation of the aquifer and its evolution. Structural analysis
requires alarge amount of high quality data which can be collected by areal photographs
and surface mapping of the terrain.

The SCI index involves the structural relationship as the lineament density. The term lin-
eament is preferred here to ‘fracture’ because it is not easy to differentiate these two by
remote sensing techniques. However, if definition of fractures is possible the SCI index
ismorereliable. Moreover, fracture genesis classification (tensile, shear and release) pro-
vides a better understanding of the aquifer system. Since the presented approach does not
intend to give a numerical figure for the infiltration, the above-mentioned details can be
literally considered by the person who makes ratings. The difficulty with this analysisis
related to the working scale selected for the specific study area. This difficulty is over-
come by applying the ‘Jenks' natural break classification’ method built into ARC-GIS.
Ratings that were assigned to the 3 classes obtained by this technique is given below:

Lineament Intensity Class ~ Rating

Low 1
Medium 2
High 3

Karstic Features (KF)

Limestone and dolomite are impervious in their intact form. When they are fractured,
their infiltration ability increases and they become more pervious. Fractures enlarged by
karstification processes are highly permeable. Karstification produces many specific sur-
ficial and subsurface landforms which are extremely important from the standpoint of
recharge (infiltration), groundwater circulation, and contaminant transport. With regard
to infiltration ability, the approach proposed here considers the karstification in the
assessment of the SCI index, by measuring the intensity of the karst depressionsin terms
of the area covered by the karst depression. The KF values for each grid are assigned on
the basis of its existence. In other words, each cell is checked whether it containsakarstic
feature or not. The rating for the existence of the KF is:

Existence Rating
Yes 3
No 0

Drainage Density (DD)

The study of the drainage (river) network on atopographical map, particularly when cou-
pled with the parameters explained above, provides useful hints about the hydrogeolog-
ical conditions. A lot of useful information for hydrogeol ogical mapping isinherent in the
drainage network density. It can be apriori concluded that impervious strata exist beneath
the surface cover in areas with dense drainage networks. The drainage network density
is measured similar to the lineaments by using Jenks natural break classification built
into ARC-GIS. Characterization of the effect of drainage density and relative ratings is
given below:



40 Levent Tezcan & Mehmet Ekmekci

Drainage Density Rating
None 4
Low 3
Medium 2
High 1

Calculation of SCI Index Using the Weights of SCI

The weight of each factor is attributed on the basis of its relative importance to infiltra-
tion. The SCI Index calculated using the rating and weight given hereis to be used only
for comparative rating of the infiltration in the study area under investigation only.

Factor Weight %
1- Surface Lithology 40
2- Lineament 20
3- Karst Features 25

4- Drainage Density 15

SCI index is then calculated according to the ratings (R;) and weights (W) of the 4 fac-
tors as follows:

SCI=X(WxR)) (i=1,4)
The SCI itself is weighted and assigned ratings in order to be used as a feature of the
DRASTIC modified for karst areas. The weight of SCI in calculating IVI is5. The ranges
and rates are as follows:

SCl Weight=5
Range Rating
Very Low 1

Low 3
Medium 5

High 7

Very High 9

Surface cover protectiveness (SCP)

Based on the fact that the major part of the natural attenuation processes take place in the
soil cover, the SCI is combined with the soil mediato produce the SCP. However, in cal-
culating V1, the soil medium (S) is used. The soil medium is defined by thicknessin this
proposed method. Soil permeability or soil composition can also be considered.
However, soil thickness is the most readily available parameter with reasonable accura-
cy. Moreover, the thickness has the major impact on the natural attenuation processes
excluding the aluvial and colluvia covers (soils). Alluvial and colluvial or slope-wash
covers are regarded as uncovered surface materials of high conductivity. The weight of
soil thickness (S) is 3. The ranges and rates are as follows:
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Soil Thickness Weight=3
Range Rating
No soil (lithozolic) (0-10cm) 10

Thin (10-20 cm)

Moderately Thick (20-50 cm)
Thick (50-90 cm)

Very Thick (>90 cm)

= W o1

Precipitation (R)

Major difficulties and large uncertainty areinherent in the cal culation of net recharge par-
ticularly in areas with limited meteorological data. Unfortunately, thisisthe common sit-
uation in most developing countries whose meteorological network is poor and ineffi-
cient in producing data convenient to calculate net recharge. Combination of the surface
cover infiltration ability with precipitation provides a good approximation of potential
recharge for vulnerability assessment. It should be noted that the vulnerability map isto
be used as a guide in determining which areas are more susceptible to groundwater pol-
[ution within the mapped area, which meansthat it produces arelative map. Therefore an
index like SCI can be used together with precipitation to assess the relative susceptibili-
ty, and apparently it can not be used for recharge estimates for groundwater potential cal-
culations. Remembering that average values are risky to use in contamination studies,
and that the seasonal distribution of precipitation is not even, the period of heavy precip-
itation should be considered in vulnerability assessment in order to be on the safe side.
The precipitation is spatially distributed over the area and classified in 5 categories fol-
lowing the method used in SCI. The weight of precipitation is taken as 1. This feature
can be easily re-defined as potential recharge by subtracting evapotranspiration from pre-
cipitation which should & so involves the land use map.

The 5 classes are categorized and rated as below:

Precipitation Weight=1
Range Rating
Very High
High
Moderate
Low

Very Low

= WU o

Intrinsic vulner ability index (1VI)
Having completed the SCI map, Soil Thickness map and Precipitation map, V1 can be
calculated by

IVI= SClw* SClr+Sw* Sr+Pw* Pr
Where, the subscripts w and r are the weight and ratings of the feature respectively. As
explained above, the IVl map is not the final map because it does not consider the hydro-
logic interrelations among cells. The IVI values are re-distributed on the basis of inter-
connection with cells which result in new vulnerability values. The final map is then the
Redistributed Intrinsic Vulnerability Index (RIVI) map.



42 Levent Tezcan & Mehmet Ekmekci

Redistributed intrinsic vulnerability index (RIVI)

The need for redistribution of 1VI values stems from the fact that a low IVI cell may
recharge ahigh IVI cell. In this casg, it is not correct to guide the decision-maker toward
that low IVI cell ignoring its connection with the high IVI cell. Therefore, al cells
recharging high V1 cells should be defined and evaluated in terms of contribution to high
IVI cells. In other words, the drainage areas of each high VI cell should be defined and
the contribution of each cell in the drainage area should be assessed. The IVI value of the
contributing cell isincreased by its contribution. Thisis quantified by weighting the con-
tribution in terms of travel time. The travel time is estimated from the concentration time
(Tc in hr) of hydrologic basins as defined by Kirpich (1940) on the basis of drainage
length (L in m) and average slope of the basin (S):

__0.00032L077

<0385

The Tc is evaluated as the travel time index (TTI) and used in weighting the impact of
the contributing low 1V1 cells on the high V1 cell. For this purpose, the IVl and TTI are
categorized and rated as below:

Tc

VI TTI

Range Rating Range Rating
Very High 5 Very Slow 1
High 4 Slow 2
Moderate 3 Moderate 3
Low 2 Fast 4
Very Low 1 Very Fast 5

Redistribution of IVI is achieved by the following calculation:
RIVI, =(IVI,_*A)+IVI,
where

A= (VI -IVI_)* ITTL
(Vi ) VI,

rTTI and rIVI are the ratings of TTI and IVI respectively.

The A istaken as zero when IVI-1VI,_; is negétive (i.e. where the IVI of the contributing

cell is higher than V1 of the receiving cell). In this case the IVI value of the contribut-
ing cell should remain the same as it does not increase the pollution potential at the
receiving cell. If the difference is positive which implies that the contributing cell has a
lower 1V than the receiving cell, then the contributing cell should be regarded as an ele-
ment increasing the pollution potential for the receiving cell and therefore should be
assigned a higher 1V1 value than its actual V1. For example, if the IVI of the contribut-
ing cell islow (IVI,_; rate=2) and the travel timeindex isfast (TTI rate=4) and the IV of

the receiving karstic cell is very high (IVI, rate=5), then it is clear that the contributing



SURFACE COVER INFILTRATION INDEX: A SUGGESTED METHOD TO ASSESS INFILTRATION CAPACIT 43
FOR INTRINSIC VULNERABILITY IN KARSTIC AREAS IN ABSENCE OF QUANTITATIVE DATA

cell creates as risk of pollution to the receiving cell and should not be ranked as a low-

vulnerability cell. When the 1V re-assessed, the RIV1 of the contributing cell isfound as
A=(5-4)*(4/5)=0.6

and RIVI=(2*0.6)+2=3.2, which suggests that the contributing cell which haslow IVI in

effect should be considered as a moderately to highly vulnerable cell.

Caske oF OLIMPOS NATIONAL PARK (TURKEY)

Definition of the Area

The coastal area extending between Antalya and Olimpos was selected as the study area
to demonstrate the DRASTIC method modified on the basis of SCI. The areaincludes a
great diversity of environmental resources all of which are under pressure from human
impacts, although the mgjor part of the areais under protection as a national park by the
Ministry of Forestry. The study areais situated on the southwest of the Taurus Mountains,
along the western shore of the Gulf of Antalya at the Western Mediterranean Region of
Turkey (Fig. 1). The surface areais about 2000 kmZ2. The high mountain range forms the
western boundary, whereas the area is bounded by the sea on the east. The elevation of
the area ranges from mean sea level up to 2366 meters am.s.| (Tahtalidag) within only
10 to 15 km distance inland from the sea coast. The climate prevailing in the areais of
Mediterranean type with dry and hot summers and warm and rainy winters. Precipitation
occurs mainly in the form of rain except over the high peaks, where snow cover remains
until the end of April. There are only two perennial surface streams, the largest of which
is located at the northeastern part of the area to the west of the city of Antalya

The main aquifers are karstic carbonate rocks of various ages. Geologically the study
area lies within the Antalya Complex, which is a part of the southwest Taurid Mountains
of the Alpine system. The complex is considered to be an alochthonous assemblage
dominated by Mesozoic ophiolithic and sedimentary rocks. It can be subdivided into the
following structural units, beginning with the structurally lowest unit: the autochthonous
Mesozoic-Cenozoic continental platform rocks of Beydaglari; the Kumluca unit of
allochthonous, imbricated, Mesozoic continental margin rocks; the Alakircay unit of

Fig. 1. Location Map of the Olimpos National Park Area
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oceanic and carbonate margin rocks deformed during the latest Cretaceaous by tectonic
and gravitational mechanisms into multiple dices interlayered with melange, which
includes as a subdivision the Teke-Tahtalidag Unit of exotic Paleozoic-Mesozoic plat-
form rocks and the Tekirova unit, a late Cretaceous partial ophiolite sequence. The geo-
logic map of the study areais given in Fig. 2.

Range and Rating Tables For the Olimpos National Park Area

Within the Olimpos National Park Area, the features were re-defined to modify the
DRASTIC method for karstic terrains. SCI map was derived by ARC-GIS using the lay-
ers of geology, lineaments, drainage density and karstic features. Fig. 3 depicts the lay-
ers used to derive the SCI map for the Olimpos National Park area. The derived SCI map
isaso shown in Fig. 3. Following the construction of the SCI map, the soil thickness was
digitized from the map of the General Directorate of Rural Affairs and matched with the
SCI and precipitation maps to produce the intrinsic vulnerability (IVI) map. The soil
thickness map is given in Fig. 4. Precipitation is distributed over the area using the data
from three meteorological stations. The data recorded in December were used in gener-
ating the areal distribution of precipitation because the heaviest precipitation fals in
December (see Fig. 4).

Intrinsic Vulnerability Index (1VI)

The relative assessment of the intrinsic vulnerability was described in five classes: Very
Low, Low, Moderately High, High and Very High. These classes were shown as differ-
ent colorson the IVl map (see Fig. 4). Very High IVI is predominantly found in the high-
ly fractured and karstified carbonate rocks. Some of these areas are at high elevations and
uncovered. In these areas the depth to the water table may be very large. However, the

Fig. 3. Layers Used in SCI Mapping in the Olimpos National Park Area
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intense karstification and lack of surface drainage imply that there is rapid flow to the
groundwater. High 1Vl comprises the largest areas. It is characterized by carbonate rocks
that lack extensive karstic features. Thin soil cover may exist in these areas. Moderate V1
is not limited to one geological group. It reflects the importance of the SCI and the soil
cover on groundwater vulnerability. Low IV is characterized by mostly semipervious or
covered pervious units. Impervious or covered semipervious units have the very low VI
values. In terms of percentage of the area, the IV1 values were distributed as follows:

IVl Range Area %
Very High 15.80
High 39.94
Moderate 19.38
Low 2181
Very Low 3.07

Redistributed Intrinsic Vulnerability Index (RIVI)

The redistributed intrinsic vulnerability map reflects the importance of hydrologic connec-
tions of cells of different 1V1 values. Assessment of RIV | reveded that the VI isredistrib-
uted to increase the vulnerability value of some less-vulnerable cells, which provides a
more readlistic relative susceptibility for pollution. After redistribution of IVI, the percent-
age of the areawith very high vulnerability has changed slightly. The result of the redistri-
bution is given below for comparison with the IVl map. The RIVI map isgiven in Fig. 5.
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Fig. 5. Redistributed Intrinsic Vulnerability Values for the Olimpos National Park Area

RIVI Range Area %
Very High 17.72
High 40.16
Moderate 18.74
Low 20.63
Very Low 2.75
Conclusions

Various methods are suggested in the literature to assess groundwater pollution potential.
Severa of them are applied to non-karstic aquifers, where they give accurate results.
Karst is considered in terms of lithology and hydraulic conductivity without taking into
account its unique hydrological behavior, which in most cases underestimates the impact
of the vadose zone in the commonly used methods such as DRASTIC or SINTACS. On
the other hand, methods that were devel oped specifically for small-scale karst areas (like
EPIK) arelacking ameans for characterizing allogenic recharge. Meanwhile, the features
considered in these kinds of methods (e.g.EPIK), such as the impact of epikarst and karst
flow, are somewhat ambiguous and should be elaborated. Considering the fact that
DRASTIC is the most efficient method in vulnerability mapping, and that most karstic
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areas in Turkey are surrounded by non-karstic units within the same hydrologic basin,
DRASTIC was modified for areas including karst areas by stressing the specific hydro-
logic nature of karst. An index called the surface cover infiltration ability index (SCI) is
defined to include the specific nature of karst. Surface lithology, lineaments, drainage
density, and existence of karstic features are considered in the derivation of the SCI map.
In the following step, the soil thickness is matched with the SCI layer to produce the sur-
face cover protectiveness (SCP). Precipitation over the area is then evaluated together
with SCI and soil cover to obtain the intrinsic vulnerability index values (V). However,
this map does not take allogenic recharge into account and therefore requires an adjust-
ment for it. The adjustment is achieved by redistributing the IV values such that the IV
of areas that contribute to higher vulnerability areas are weighted according to their
effects on the high- vulnerability (karst) areasto which they drain. The weighting is made
on the basis of the time of concentration concept in hydrology. This parameter involves
the distance and surface slope between two areas. Thus, the faster the contribution pro-
vided by the low IVI area, the higher weight is assigned to that area

Although application of the method to areal arearevealed that it is efficient, the features
and parameters used require a fine calibration. Comparison of most commonly used
methods in a well-known area would provide this calibration.
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